跳至主要內容

堆排序


二叉树

要了解堆首先得了解一下二叉树,在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。

二叉树的特点
二叉树的每个结点至多只有二棵子树(不存在度大于 2 的结点)
二叉树的子树有左右之分,次序不能颠倒。
二叉树的第 i 层至多有 2i - 1 个结点;
深度为 k 的二叉树至多有 2k - 1 个结点;
对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则n0 = n2 + 1。

树和二叉树的三个主要差别:
树的结点个数至少为 1,而二叉树的结点个数可以为 0
树中结点的最大度数没有限制,而二叉树结点的最大度数为 2
树的结点无左、右之分,而二叉树的结点有左、右之分
二叉树又分为完全二叉树(complete binary tree)和满二叉树(full binary tree)

满二叉树:一棵深度为 k,且有 2k - 1 个节点称之为满二叉树

深度为 3 的满二叉树 full binary tree

完全二叉树:深度为 k,有 n 个节点的二叉树,当且仅当其每一个节点都与深度为 k 的满二叉树中序号为 1 至 n 的节点对应时,称之为完全二叉树

算法简介

堆(二叉堆)可以视为一棵完全的二叉树,完全二叉树的一个“优秀”的性质是,除了最底层之外,每一层都是满的,这使得堆可以利用数组来表示(普通的一般的二叉树通常用链表作为基本容器表示),每一个结点对应数组中的一个元素。

算法流程

时间复杂度和稳定性

堆排序的时间复杂度是O(N*lgN)。假设被排序的数列中有N个数。遍历一趟的时间复杂度是O(N),需要遍历多少次呢? 堆排序是采用的二叉堆进行排序的,二叉堆就是一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的定义,它的深度至少是lg(N+1)。最多是多少呢? 由于二叉堆是完全二叉树,因此,它的深度最多也不会超过lg(2N)。因此,遍历一趟的时间复杂度是O(N),而遍历次数介于lg(N+1)和lg(2N)之间;因此得出它的时间复杂度是O(N*lgN)。

堆排序稳定性堆排序是不稳定的算法,它不满足稳定算法的定义。它在交换数据的时候,是比较父结点和子节点之间的数据,所以,即便是存在两个数值相等的兄弟节点,它们的相对顺序在排序也可能发生变化。

代码实现

/**
 * 堆排序: Java
 *
 * @author skywang
 * @date 2014/03/11
 */
public class HeapSort {

    /* 
     * (最大)堆的向下调整算法
     *
     * 注: 数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
     *     其中,N为数组下标索引值,如数组中第1个数对应的N为0。
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
     *     end   -- 截至范围(一般为数组中最后一个元素的索引)
     */
    public static void maxHeapDown(int[] a, int start, int end) {
        int c = start;            // 当前(current)节点的位置
        int l = 2*c + 1;        // 左(left)孩子的位置
        int tmp = a[c];            // 当前(current)节点的大小

        for (; l <= end; c=l,l=2*l+1) {
            // "l"是左孩子,"l+1"是右孩子
            if ( l < end && a[l] < a[l+1])
                l++;        // 左右两孩子中选择较大者,即m_heap[l+1]
            if (tmp >= a[l])
                break;        // 调整结束
            else {            // 交换值
                a[c] = a[l];
                a[l]= tmp;
            }
        }
    }

    /*
     * 堆排序(从小到大)
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     n -- 数组的长度
     */
    public static void heapSortAsc(int[] a, int n) {
        int i,tmp;

        // 从(n/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个(最大)二叉堆。
        for (i = n / 2 - 1; i >= 0; i--)
            maxHeapDown(a, i, n-1);

        // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
        for (i = n - 1; i > 0; i--) {
            // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最大的。
            tmp = a[0];
            a[0] = a[i];
            a[i] = tmp;
            // 调整a[0...i-1],使得a[0...i-1]仍然是一个最大堆。
            // 即,保证a[i-1]是a[0...i-1]中的最大值。
            maxHeapDown(a, 0, i-1);
        }
    }

    /* 
     * (最小)堆的向下调整算法
     *
     * 注: 数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
     *     其中,N为数组下标索引值,如数组中第1个数对应的N为0。
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
     *     end   -- 截至范围(一般为数组中最后一个元素的索引)
     */
    public static void minHeapDown(int[] a, int start, int end) {
        int c = start;            // 当前(current)节点的位置
        int l = 2*c + 1;        // 左(left)孩子的位置
        int tmp = a[c];            // 当前(current)节点的大小

        for (; l <= end; c=l,l=2*l+1) {
            // "l"是左孩子,"l+1"是右孩子
            if ( l < end && a[l] > a[l+1])
                l++;        // 左右两孩子中选择较小者
            if (tmp <= a[l])
                break;        // 调整结束
            else {            // 交换值
                a[c] = a[l];
                a[l]= tmp;
            }
        }
    }

    /*
     * 堆排序(从大到小)
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     n -- 数组的长度
     */
    public static void heapSortDesc(int[] a, int n) {
        int i,tmp;

        // 从(n/2-1) --> 0逐次遍历每。遍历之后,得到的数组实际上是一个最小堆。
        for (i = n / 2 - 1; i >= 0; i--)
            minHeapDown(a, i, n-1);

        // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
        for (i = n - 1; i > 0; i--) {
            // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最小的。
            tmp = a[0];
            a[0] = a[i];
            a[i] = tmp;
            // 调整a[0...i-1],使得a[0...i-1]仍然是一个最小堆。
            // 即,保证a[i-1]是a[0...i-1]中的最小值。
            minHeapDown(a, 0, i-1);
        }
    }

    public static void main(String[] args) {
        int i;
        int a[] = {20,30,90,40,70,110,60,10,100,50,80};

        System.out.printf("before sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");

        heapSortAsc(a, a.length);            // 升序排列
        //heapSortDesc(a, a.length);        // 降序排列

        System.out.printf("after  sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");
    }
}

参考

https://www.pdai.tech/md/algorithm/alg-sort-x-heap.htmlopen in new window
https://zhuanlan.zhihu.com/p/635077607?utm_id=0open in new window
https://zhuanlan.zhihu.com/p/508713899open in new window
https://baijiahao.baidu.com/s?id=1716645768730088243&wfr=spider&for=pcopen in new window
https://upimg.baike.so.com/doc/1008529-1066354.htmlopen in new window

上次编辑于: