跳至主要內容

快速排序


算法简介

选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

算法流程

从数列中挑出一个基准值。将所有比基准值小的摆放在基准前面,所有比基准值大的摆在基准的后面(相同的数可以到任一边);在这个分区退出之后,该基准就处于数列的中间位置。递归地把"基准值前面的子数列"和"基准值后面的子数列"进行排序。下面以数列a={30,40,60,10,20,50}为例,演示它的快速排序过程(如下图)。

快速排序
快速排序

时间复杂度和稳定性

快速排序的时间复杂度在最坏情况下是O(N2),平均的时间复杂度是O(N*lgN)。

假设被排序的数列中有N个数。遍历一次的时间复杂度是O(N),需要遍历多少次呢? 至少lg(N+1)次,最多N次。为什么最少是lg(N+1)次? 快速排序是采用的分治法进行遍历的,我们将它看作一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的定义,它的深度至少是lg(N+1)。因此,快速排序的遍历次数最少是lg(N+1)次。为什么最多是N次? 这个应该非常简单,还是将快速排序看作一棵二叉树,它的深度最大是N。因此,快读排序的遍历次数最多是N次。

快速排序是不稳定的算法,它不满足稳定算法的定义。假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!

代码实现

/**
 * 快速排序: Java
 *
 * @author skywang
 * @date 2014/03/11
 */

public class QuickSort {

    /*
     * 快速排序
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     l -- 数组的左边界(例如,从起始位置开始排序,则l=0)
     *     r -- 数组的右边界(例如,排序截至到数组末尾,则r=a.length-1)
     */
    public static void quickSort(int[] a, int l, int r) {

        if (l < r) {
            int i,j,x;

            i = l;
            j = r;
            x = a[i];
            while (i < j) {
                while(i < j && a[j] > x)
                    j--; // 从右向左找第一个小于x的数
                if(i < j)
                    a[i++] = a[j];
                while(i < j && a[i] < x)
                    i++; // 从左向右找第一个大于x的数
                if(i < j)
                    a[j--] = a[i];
            }
            a[i] = x;
            quickSort(a, l, i-1); /* 递归调用 */
            quickSort(a, i+1, r); /* 递归调用 */
        }
    }

    public static void main(String[] args) {
        int i;
        int a[] = {30,40,60,10,20,50};

        System.out.printf("before sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");

        quickSort(a, 0, a.length-1);

        System.out.printf("after  sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");
    }
}

参考

https://www.pdai.tech/md/algorithm/alg-sort-x-fast.htmlopen in new window

上次编辑于: